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Abstract. We calculate the diffraction spectrum of finite-size crystalline bundles of single wall carbon
nanotubes (SWNT). The general profile of the spectrum as well as the width and position of the (1 0)
diffraction peaks of the 2-D lattice of bundles depend on the tubes symmetry, distribution of tubes diam-
eters and diameter of the bundles. Consequently, any attempt to derive the mean-diameter of the tubes
from a diffraction spectrum requires to consider the diameters distribution of the tubes and the size of the
bundles. Experimental diffraction profiles of various single wall nanotubes samples are well fitted by the
calculated spectra.

PACS. 61.12.Bt Theories of diffraction and scattering – 61.10.Dp Theories of diffraction and scattering –
61.46.+w Clusters, nanoparticles, and nanocrystalline materials

1 Introduction

Single-wall carbon nanotubes (SWNT) are promising
systems for basic science in one-dimension and nano-
applications in electronics. Some of their physical proper-
ties, including mechanical, elastic, transport, are known
to depend on their molecular structure, helical pitch, and
bundle-like crystalline packing [1]. Transmission electronic
microscopy (TEM) observations have shown that the
SWNT usually self-assemblate to form finite-size
crystalline-like bundles of some tens to some hundreds
tubes [2,3]. TEM [2–4], electron diffraction [5] and
Raman [3,6–8] investigations have shown that in most of
the cases a sample contains various kinds of nanotubes,
i.e. tubes of various diameters and symmetries. The
diffraction profile of the crystalline ropes of SWNT
has been previously reported and modelised assuming
a 2-D infinite hexagonal lattice of uniform cylinders
[2,3,9,11]. Thess et al. used an arbitrary line width
to account for the peak broadening due to the finite
diameter of the bundles [2]. Such an approach is not
relevant for polydisperse samples, as illustrated by the
disagreement found between the mean tube diameter
derived from TEM measurements and from the position
of the diffraction peaks in reference [9], and discussed
elsewhere [10]. In a recent work, Rinzler et al. fitted their
experimental data with a series of Gaussian lines in order
to get an estimate of the tube diameter distribution [11].
None of these former analysis took properly into account
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both the finite size of the crystalline ropes and the tube
diameter distribution. In the present work, we compute
the diffraction spectra for SWNT bundles formed with a
finite number of tubes and consider various distributions
of tube diameters. Our model is presented in Section 2.
Section 3 deals with the general changes in the spectra
related to the variation of the structural parameters of
the samples, i.e. the symmetry of the tubes, the mean
tube diameter and polydispersity, the diameter of the
bundles. The width and position dependences of the most
intense (1 0) Bragg peak with respect to the structural
parameters of the ropes are presented and discussed in
Section 4. In Section 5, we report experimental diffraction
measurements on SWNT and fit them with calculated
spectra. From the fit, we derive a structural picture of
the samples. We conclude in Section 6.

2 Principles of the calculations

2.1 Numerical samples

The SWNT were built by rolling up graphene sheets to
form tubes with various diameters and symmetries. Fol-
lowing the usual terminology of reference [1], we here-
after use the pair of integers (n, m) to refer to the rolling
up vector and distinguish the following helicities: arm-
chair (n, n), zigzag (n, 0) and chiral (n, m 6= n). Tubes
with diameters Dt ranging from 6.7 to 30 Å were con-
sidered. The nanotubes were placed parallel one to each
others on a finite-size 2D hexagonal array of cell parameter
a0 = Dt+dt−t to form concentric shells, with an intertube



264 The European Physical Journal B

spacing dt−t fixed to 3.2 Å, value slightly smaller than
the inter-graphene sheets distance in graphite, in agree-
ment with calculations [12] and experiments [2]. Calcu-
lations were carried out for bundles of various diameters
Db, (hereafter, we call Nt the number of tubes per bun-
dle). The spectrum for a polydisperse sample is the sum
of the spectra calculated for each of the bundles form-
ing the sample, which were prepared in the following way:
the distribution of tubes diameters D was chosen to fit a
Gaussian distribution

N(D) ∝ exp [−(
D −Dt

σt
)]

2
(1)

centered on Dt with a standard deviation σt (the full
width at half maximum of the distribution is therefore
FWHM = 2

√
ln 2σt). For large polydispersities, the Gauss

function was truncated below 6.7 Å and above 30 Å in
order to keep reasonable values for the tubes diameters.
We recall that most of the experimental observations by
electronic microscopy show that the bundles are made of
nanotubes with a rather small diameter dispersity [2–4].
By contrast, the mean-diameter of the tubes is found to
depend on the area of investigation [3] (this probably re-
lates to the temperature of the growth area). Therefore,
we built each bundle with a set of monodisperse SWNT
of diameter D (D varies from a bundle to another). We
assumed that Nt was a constant for all bundles so that we
got a double source of polydispersity: that on the tubes
diameters fixed by σt and that on the bundles diame-
ters fixed by Nt and D. However, as discussed below, we
checked that the profile of the spectra and in particular
that of the (1 0) peak depends essentially on the tubes di-
ameters dispersity and is sensitive to the size of the bundle
only for small Nt.

2.2 Expression of the diffraction cross section

The model used for calculating the powder diffraction
spectra is based on the general formulas for X-rays/
neutrons diffraction [13]. In the case we are dealing with
(elastic and coherent diffraction), the intensity of the wave
diffracted by one bundle writes as follows:

I(Q) ∝ ||

∫
volume

fs exp(iQ · r)ρ(r)d3r||2 (2)

where Q is the scattering vector, ρ(r) is the density of
scatterers in the sample and fs is the atomic scattering
amplitude of the scatterer s (fs is a function of Q for X-
rays while this is a constant, the atomic scattering length,
for neutrons). In a powder experiment, the diffraction is
to be averaged on all the directions of space or, equiva-
lently, on all the orientations of the scattering vector in
the reciprocal space. The mean diffracted intensity thus
writes:

〈I(Q)〉 ∝

∫∫
I(Q)d2Q

4πQ2
(3)
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Fig. 1. Schematic representation of the system of coordinates
and variables used for the calculations.

where the integration is made on the surface of the sphere
of radius |Q|. The density of atom nuclei writes as follows
(Fig. 1):

ρ(r) ∝
Nt∑
t=1

Ns∑
s=1

δ3(r− rs,t) (4)

where rs,t is the position of scatterer s on tube t. As far
as one considers static scatterers, the intensity calculated
using equations (1) to (3) has to be modulated by the
Debye-Waller factor exp(−2W (Q)), where W = 1

2 〈Q
2u2〉

and 〈u2〉 are the mean-square vibrational amplitudes of
the atoms. For the computation, we used the values of
〈u2〉 of graphite [14]. The expression of I(Q) thus writes
(Fig. 1):

〈I(Q)〉 ∝ exp(−2W (Q))

×

∫ π/2

0

dθ sin(θ)

∫ π

0

dφ|s(Q)S(Q)F (Q)|2 (5)

where F (Q) =
∑Ns
s=1fs exp(iQrs) is the structure factor

of the nanotube unit cell i.e. the smallest periodic unit

along z, s(Q) =
∑Nc
c=1 exp(iQrc) is the intratube inter-

ference function and S(Q) =
∑Nt

t=1 exp(iQrt) is the in-
tertube interference function. The index s, c and t refer
to the scatterers, tubes unit cells and tubes, respectively
(Fig. 1), and Ns, Nc and Nt are the number of scatter-
ers in an unit cell, the number of unit cells in a tube and
the number of tubes in a bundle, respectively. The atomic
position thus writes r = rt + rc + rs.
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The high-Q range (Q > 2 Å−1) of the spectra is sen-
sitive to the intrinsic structure of individual tubes. It was
calculated using equations (3, 4) and considering each
atom nucleus on each tube as a scatterer. This allows to
calculate rigorously neutron diffraction spectra. Calcula-
tion of the peaks intensities of X-rays diffraction spectra
would require a more sophisticated choice of the position
of the scatterers since one should describe accurately the
electronic densities on the folded graphene sheets.

By contrast, the low-Q part of the diffraction pattern
(belowQ = 2 Å−1) is only sensitive to the crystalline order
in the bundle and its calculation doesn’t require to con-
sider the discrete position of each scatterer on the tubes.
In this low-Q range, we assumed an infinite length for the
tubes and considered the following uniform density of scat-
terers at the surfaces of the tubes, relevant for calculating
both X-rays and neutron diffraction spectra:

ρ(r) ∝
Nt∑
t=1

δ(|rt − rproj| − r0) (6)

where r0 is the radius of the tubes and rproj is the projec-
tion of r on the (XY ) plane (Fig. 1).

Using equation (2), one gets:

〈I(Q)〉 ∝ exp(−2W (Q))
r0

2

Q
P (Q)

Nt∑
i,j=1

J0(Ri,jQ) (7)

where P (Q) ∝ [fsJ0(r0Q)]2 is the form factor of one tube
(plotted in Fig. 2a), J0 is the zero order Bessel function
and Ri,j is the distance between tubes i and j in the
bundle.

3 Qualitative features of the diffraction
spectra

In this section, we are interested in characteristic features
of the diffraction spectra and changes associated with the
variations of each structural parameter. Figure 2 presents
the calculated diffraction spectra for various sets of pa-
rameters. We first deal with the tube helicity-dependent
features of the spectra. Figure 2a presents some diffrac-
tion spectra calculated for bundles formed by SWNT of
comparable diameter but various helical pitches. As ex-
pected, only the high-Q range is sensitive to intratubes
density correlations. The spectra all superimpose below 2
Å−1 but present a specific profile above. The diffraction
pattern for chiral tubes is much more complex because of
their lower symmetry, and consequently the larger size of
the unit cell. Therefore, high resolution diffraction mea-
surements should allow to discuss the symmetry of SWNT
and provide an averaged “bulk” information by contrast
with the local one derived from electronic diffraction in-
vestigations [5]. Such signatures are however unlikely to
be experimentally measured because of the weakness of
the signal in this Q range, the wide distribution of he-
lical pitches of SWNT in most of the samples, and the

intense contribution of the diffraction peaks of graphite
and residual catalysts in the same Q-range.

At low-Q, the diffraction profile is sensitive to the
structure of the bundles, i.e. to their diameter and to the
diameter dispersity of the tubes. As expected, the general
profiles of the spectra are similar to those calculated for an
infinite hexagonal array of tubes [2], except at very low-
Q where some additional peaks are found (see below the
(1 0) peak in Fig. 2). These are signatures of the finite-size
of the bundles and correspond to diffraction lines for which
extinctions rules are canceled because of the finite number
of diffraction planes. The position of these peaks depends
on the diameter of the tubes Dt (Fig. 2b), the diameter
of the bundles Db (Fig. 2c) and the standard deviation
of the Gaussian distribution σt (Fig. 2d). As Db → ∞,
these peaks vanish and one recovers as expected the regu-
lar spectrum of an infinite crystal (not shown). The broad-
ening of the diffraction lines can also prevent their obser-
vation. This occurs for samples with large polydispersities
(Fig. 2d). In experimental studies, not only the polydis-
persity of the samples can prevent the observation of these
peaks, but also the lack of resolution as well as the small
angle scattering signal from porosity and impurities.

The apparent positions of the diffraction peaks Q(hk),
where h and k are the Miller index, are shifted with re-
spect to the Bragg positions Q∞(hk) for an infinite network

of monodisperse tubes because of the modulation of the
diffraction pattern by the SWNT form factor. Thess et al.
already discussed this effect [2] but used arbitrary line-
shapes to account for it in their calculations. Figure 2
shows that the width of the diffraction peaks depends sig-
nificantly both on the bundle diameter (Fig. 2c), as ex-
pected for periodic structures of finite-size and in a larger
extent on the polydispersity (even for a small one, see
Fig. 2d). As expected, the broader the peaks (finite-size
effects or polydispersity) and the larger the difference be-
tween Q∞(hk) and the maximum of the form factor, the

larger the shift of the diffraction peaks with respect to
Q∞(hk) and the smaller their intensity. The broadening of

the (1 0) peak and the concomitant shift will be discussed
in detail in the next section.

Consequently, any attempt to derive a mean-tube di-
ameter from the position of the peaks should take into
account the diameter of the bundle and the polydisper-
sity of the sample. Actually, as illustrated in Figure 2, a
careful study of the diffraction spectra not only allows to
derive the mean-tube diameter but provides an estimate
of their diameter dispersity and of the diameter of the
bundles. This explains the systematic disagreement be-
tween Dt estimated from TEM experiments and from the
position of the diffraction peaks [10], that was reported
in reference [9]. In the purpose of being useful for the
analysis of experimental spectra, we propose in the next
section a detailed quantitative analysis of the width and
position of the most intense of the diffraction peaks, the
(1 0) peak, which provides the most characteristic sig-
nature of the bundle-like packing. We report in Section 5
original neutron diffraction measurements on samples pre-
pared by the arc electric technique and by laser ablation
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Fig. 2. Left part of the figure: schematic representation of the samples: a) the different helicities of the nanotubes, b) and c) a
bundle, d) the diameter distribution of the tubes. Right part of the figure: diffraction spectra of bundles of SWNT for various
sets of structural parameters. Dt is the mean tube diameter, Db the diameter of a bundle, Nt the number of tubes in a bundle
and σt the standard deviation of the Gaussian distribution. a) Dt ' 13.6 Å, Nt = 19, σt = 0, various helical pitches (armchair
(10,10), zigzag (17,0) and chiral (15,5)); b) Armchair SWNT with various Dt (8.1 Å (6,6), 13.6 Å (10,10), 19.0 Å (14,14)),
Nt = 37, σt = 0; c) Dt = 13.6 Å ((10,10) SWNT), various Nt (7, 91, 721), σt = 0; d) Dt = 13.6 Å ((10,10) SWNT), Nt = 37,
various σt (0, 3 Å, 6 Å). Spectra in (a) were calculated using the discrete positions of each scatterer. The form factor of one
tube, whose intensity has been multiplied by an arbitrary factor for clarity, is superimposed with the diffraction spectra in (b).
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Fig. 3. Dependence of the width of the (1 0) Bragg peak of the bundles over the following structural parameters: a) tubes
diameter (for various bundles diameters and σt = 0); b) diameter of the bundle (for various tubes diameter and σt = 0); c)
tubes diameters distribution (for Dt = 13.6 Å and Nt = 37).

that can only be fitted by considering a small and signifi-
cant polydispersity, respectively.

4 Quantitative analysis of the (1 0) peak

In Figures 3 and 4, we plot the width (FWHM) ∆Q(10)

and apparent position Q(10) dependences of the (1 0)
diffraction peak as a function of (a) the diameter of
the tubes, (b) the diameter of the bundle and (c) the
standard deviation of the Gaussian distribution of the
tubes diameters. Let’s first discuss the width of the peak.
For monodisperse samples (same tubes, same bundles),
∆Q(10) is found to increase when the tubes diameters de-
crease and/or the number of tubes per bundle decreases
(Fig. 3a). Actually, we find that the width only depends
on the diameter of the bundle, independently of the diam-
eter of the tubes inside (Fig. 3b), as expected for periodic
structures of finite size. On the other hand, the width
of the peak increases when the diameter dispersity of the
tubes increases (Fig. 3c). This is the expected signature in

the reciprocal space of the coexistence of nanocrystallites
(bundles) with various cell parameters in the sample.

The position of the peak is also found to depend on all
these parameters: the mean-tube diameter, the diameter
of the bundles and the tubes diameters dispersity (Fig. 4).
As expected, Q(10) increases when Dt decreases. In addi-
tion, Q(10) increases when the number of tubes per bundle
decreases (Fig. 4a). A significant shift to high Q is actu-
ally observed only for very small bundles (Db < 200 Å,
see Fig. 4b). The product Q(10)a0, proportional to the ra-
tio between the position of the peak in a finite network
and that in an infinite one, Q(10)/Q

∞
(10), is found to de-

pend only on the diameter of the bundle for σt = 0 in-
dependently of the tubes diameters, as illustrated by the
mastercurve plotted in Figure 4b. As expected, one recov-
ers Q∞(10) ' 4π/(

√
3a0) for large bundles of monodisperse

tubes (dashed line in Fig. 4b). By contrast, a huge shift to
low-Q is systematically observed for polydisperse samples
and the smaller the tubes, the larger the shift (Fig. 4c).
As a tool for experimenters, we report in the inset
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of Figure 4c the product Q(10)a0 as a function of σt for
three values of Dt. From a mean-value of the tubes diame-
ter derived from microscopic or spectroscopic experiments,
one can estimate with a rather good accuracy the tubes
diameter dispersity from these data as long as the disper-
sity is significant (and therefore the shift due to dispersity
larger than that due to the finite-size of the bundles) [10].
However, a rigorous analysis of the data also requires to
consider the general profile of the diffraction spectra, as
discussed in the next section.

The peculiar broadening and shift of the (1 0) peak
all have a same origin, i.e. the modulation of the Bragg
pattern by the form factor of the nanotubes. For an in-
finite and homogeneous crystal, the diffraction peaks are
Dirac peaks and the form factor only modulates their in-
tensity. As soon as the reflections get an intrinsic non-
zero width, the modulation by the form factor leads in
addition to some variations of the position and width
of the peaks. This occurs because of the difference be-

tween the position of the peaks and the extrema of the
form factor (Fig. 2b, see also Fig. 2 in reference [2]). The
apparent position and intensity of the (1 0) peak depend
both on its intrinsic width and on the relative positions
of Q∞(10) = 4π/(

√
3a0) and the first extrema of the form

factor, i.e. Qmin ' 4.8/Dt and Qmax ' 7.6/Dt for the first
minimum and maximum, respectively. Let’s call R the ra-
tio (Qmax −Q(10))/(Qmax −Qmin). R tends to zero when
Dt increases and increases up to the unity when Dt de-
creases down to ' 6.3 Å, a diameter slightly smaller than
the smallest nanotube diameter allowed [1]. Consequently,
one finds that the intensity of the Q(10) peak continuously
increases for increasing tubes diameters while it vanishes
when Dt decreases. Therefore, when one deals with poly-
disperse samples, the diffraction spectrum is dominated
by the contribution of large tubes. This leads to a shift
to low-Q of Q(10) and to a concomitant overestimation of
the mean-tube diameter [9]. For a distribution of diam-
eters centered on that of (10,10) SWNT and a standard
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Fig. 5. Comparison between experimental and calculated
diffraction spectra. a) electric arc sample (details in the text)
fitted with Dt = 13.6 Å, Nt = 37, σt = 2 Å. In the intermedi-
ate curve, a polynomial background has been subtracted from
the experimental data; b) laser ablation sample (details in the
text) fitted with Dt = 13.6 Å, Nt = 37, σt = 6 Å.

deviation σt = 4 Å, the overestimation of Dt is about 10%
and increases up to 40% for σt = 8 Å(Fig. 4c).

5 Fits of experimental data

We present in Figure 5 experimental neutron diffraction
(ND) spectra recorded on the spectrometer G6-1 at Lab-
oratoire Léon Brillouin, Saclay, France. The spectra were
measured at room temperature using an incident wave-
length λ = 4.73 Å and corrected for the empty cell back-
ground and the sensibility of the detectors. The resolu-
tion was checked to be much smaller than the intrinsic

linewidth of the SWNT peaks, and close to that of the
(0 0 2) graphite peak (located around 1.87 Å−1 in Fig. 5).
Two series of samples were investigated. The first one was
prepared by the electric arc discharge (EA) technique at
Montpellier using an experimental set-up presented in de-
tail in reference [3]. Other samples were synthesized by an
original laser ablation (LA) technique (significantly dif-
ferent than that of the Rice group [2]) in Zaragoza, as
described in reference [4]. A detailed investigation of the
structure of the nanotubes in these samples will be pre-
sented elsewhere [15]. The exact position and shape of
the (1 0) peak as well as those of the other peaks obvi-
ously depend on the synthesis parameters (chemical na-
ture and amount of catalysts used, nature and pressure
of the gas filling the reactive chamber...). However, the
general features of the diffraction spectra appear to be
above all technique-dependent. Rather narrow peaks are
recorded for EA samples with the (1 0) peak pointing out
between 0.40 and 0.45 Å−1. The general profile of the spec-
tra is rather similar to that reported by Thess et al. [2] for
samples prepared by laser ablation by the Rice group. By
contrast, the diffraction profiles for the LA samples from
Zaragoza present broader linewidths and the (1 0) peak
points out between 0.30 and 0.35 Å−1. Typical spectra
are presented in Figures 5a and 5b, respectively. The hy-
pothesis of larger mean tube diameters to the LA profile
was in disagreement with TEM observations that allow to
estimate a mean-diameter very close to that observed for
EA samples [4]. The TEM observations also indicate that
the mean-diameter of the bundle is rather similar for the
EA and LA samples, with a number of tubes per bundle
usually found to lie between 30 and 50. However, by con-
trast with EA samples, the general broad profile of the
spectra for LA samples is the first signature of a signifi-
cant polydispersity and the TEM observations do confirm
the presence of some large tubes in small but significant
amount [4].

Therefore we fitted the data with spectra calculated
with the following fixed parameters: Dt = 13.7 Å and
Nt = 37 and various σt. The best agreement with the
data was found for σ = 2 Å and σ = 6 Å for the EA and
LA spectrum, respectively (see solid lines in Fig. 5). We
emphasize that for a number of tubes in the bundles larger
than 30, the calculated spectrum almost doesn’t depend
on Nt (see Fig. 4b) and therefore an accurate value of
Nt can not be derived from the fit. The agreement is ob-
served both for the position and shape of the (1 0) peak
and the general profile of the spectra. However, in the
EA case, a poor agreement was found in the low-Q range
where the calculation didn’t reproduce well the huge in-
crease of intensity below 0.3 Å−1. We point out that in
this low-Q range, one expects both an intrinsic contribu-
tion from the form factor of the tubes and a possible addi-
tional contribution from the scattering of nanoparticles of
catalysts or of other carboneous species. For the EA sam-
ples, the shoulder around 1.84 Å−1 on the left part of the
(0 0 2) graphite peak is assigned to graphite nanoparti-
cles. A peak at the same position is recorded for mul-
tiwall carbon nanotubes (MWNT) [16] but we checked
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by electron microscopy that no MWNT were observable in
these samples [3]. In addition, we recorded the diffraction
signature of a significant amount of Ni catalysts particles
(not shown). On the other hand, the intrinsic contribution
to low-Q scattering from the nanotubes is expected to be
small because of the narrow distribution of tubes diame-
ters. This explains the disagreement between experiment
and calculations in the low-Q range. If one subtracts a
polynomial background from the spectrum, one recovers
a good agreement above 0.3 Å−1 (see Fig. 5a). Note that
the intensity of the higher order peaks is slightly weaker
in the experiments. This might be assigned to some fluc-
tuations of the lattice constant due to tube diameter dis-
persity within a single bundle that was not considered in
our calculations and that would increase the width of the
higher order peaks. By contrast, in the LA case, only a
very small amount of impurities can be detected form the
diffraction spectra. In addition, one expects rather large
low-Q signal because of the presence of small tubes (see
Fig. 2). For these samples, the agreement between exper-
iment and calculations is good all over the Q-range, in-
cluding the low-Q part.

6 Conclusion

A classical approach for the calculation of the diffraction
spectra of bundles of single wall carbon nanotubes was de-
veloped. The effect of the mean-tube diameter, the finite-
size of the bundles and the diameter dispersity of the
tubes on the general profile and the particular position
and linewidth of the (1 0) peak were discussed. We find
that the width and apparent position of the peak is signif-
icantly dependent on all the structural parameters above.
This explains the systematic overestimation of the tube
diameter with respect to TEM analysis reported in the
literature [9,10]. A good agreement between experiments
and calculations is found for samples prepared both by
the arc electric discharge technique in Montpellier and an
original laser ablation technique developed in Zaragoza.
The distribution of tubes diameters is found to be rather
narrow for the EA samples and more polydisperse for the
LA samples. A detailed Raman investigation on similar
samples that corroborates the present results will be pub-
lished elsewhere [15].
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Muñoz, A.M. Benito, M.T. Martinez and G.F. de la Fuente for
providing high-quality samples. One of us (S.R.) acknowledges
financial support from the Région Languedoc-Roussillon.

References

1. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Sci-
ence of fullerenes and carbon nanotubes (Academic Press,
New-York, 1996).

2. A. Thess, R. Jee, P. Nikolaev, H. Dai, P. Petit, J. Robert,
C. Xu, Y. Hee Lee, S. Gon Kim, A.G. Rinzler, D.T.
Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E.
Smalley, Science 273, 483 (1996).

3. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M. Lamy
de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer,
Nature 388, 756 (1997).

4. W.K. Maser, E. Munoz, A.M. Benito, M.T. Martinez, G.F.
de la Fuente, Y. Maniette, E. Anglaret, J.L. Sauvajol,
Chem. Phys. Lett. 292, 587 (1998).

5. J.M. Cowley, P. Nikolaev, A. Thess, R.E. Smalley, Chem.
Phys. Lett. 265, 379 (1997); L. Henrard, A. Loiseau, C.
Journet, P. Bernier (to be published).

6. A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund,
K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon,
A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus,
Science 275, 187 (1997).

7. A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, Y. Nishina, Phys.
Rev. Lett. 78, 4434 (1997).

8. E. Anglaret, N. Bendiab, T. Guillard, C. Journet, G.
Flamant, D. Laplaze, P. Bernier, J.L. Sauvajol, Carbon
36, 1815 (1998).

9. S. Bandow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E.
Richter, P.C. Eklund, Phys. Rev. Lett. 80, 5003 (1998).

10. E. Anglaret, S. Rols, J.L. Sauvajol, Phys. Rev. Lett. 81,
4780 (1998).

11. A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman,
F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann,
D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C.
Eklund, R.E. Smalley, Appl. Phys. Lett. A 67, 29 (1998).

12. J.C. Charlier, X. Gonze, J.P. Michenaud, Europhys. Lett.
29, 43 (1995).

13. S.W. Lovesey, Theory of neutron scattering from condensed
matter (Oxford Sciences, 1984).

14. R. Almairac (unpublished results).
15. S. Rols, E. Anglaret, J.L. Sauvajol, G. Coddens, A.J.

Dianoux, Appl. Phys. A (to be published); J.L. Sauvajol
et al., Phys. Rev. B (submitted).

16. O. Zhou, R.M. Fleming, D.W. Murphy, C.H. Chen, R.C.
Haddon, S.H. Glarum, Science 263, 1744 (1994).


